## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Bis(4-methoxypyridin-3-yl)diazene

Steffen Thies, ${ }^{\text {a }}{ }^{*}$ Christian Näther ${ }^{\mathbf{b}}$ and Rainer Herges ${ }^{\text {a }}$ *<br>${ }^{\text {a }}$ Institut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Universität Kiel, Otto-Hahn-Platz 6/7, 24118 Kiel, Germany<br>Correspondence e-mail: cnaether@ac.uni-kiel.de, rherges@ac.uni-kiel.de

Received 20 April 2012; accepted 24 April 2012
Key indicators: single-crystal X-ray study; $T=220 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; $R$ factor $=0.039 ; w R$ factor $=0.105 ;$ data-to-parameter ratio $=14.7$.

The asymmetric unit of the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$, consists of one half-molecule, which is located on a center of inversion. The molecule has a step-like shape; the azo group adopting a trans configuration, with the pyridine rings being parallel-displace.

## Related literature

For background to this work, see: Thies et al. (2010, 2011); Venkataramani et al. (2011).


## Experimental

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=244.26$
Orthorhombic, Pbca
$a=13.3976$ (8) $\AA$
$b=6.2101$ (6) A
$c=13.6079$ (9) $\AA$

$$
\begin{aligned}
& V=1132.18(15) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=220 \mathrm{~K} \\
& 0.3 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection
Stoe IPDS-1 diffractometer
1002 reflections with $I>2 \sigma(I)$
5829 measured reflections
1235 independent reflections

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 84$ parameters
$w R\left(F^{2}\right)=0.105$
$S=1.04$
1235 reflections
$R_{\text {int }}=0.045$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Data collection: $X-A R E A$ (Stoe \& Cie, 2008); cell refinement: $X$ $A R E A$; data reduction: $X-R E D 32$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft via SFB 677.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5885).

## References

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). $X$-AREA and X-RED32. Stoe \& Cie, Darmstadt, Germany. Thies, S., Bornholdt, C., Koehler, F., Sönnichsen, F. D., Naether, C., Tuczek, F. \& Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.
Thies, S., Sell, H., Schütt, C., Bornholdt, C., Näther, C., Tuczek, F. \& Herges, R. (2011). J. Am. Chem. Soc. 133, 16243-16250.

Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. \& Herges, H. (2011). Science, 331, 445-448.

## supplementary materials

Acta Cryst. (2012). E68, o1568 [doi:10.1107/S1600536812018326]

## Bis(4-methoxypyridin-3-yl)diazene

## Steffen Thies, Christian Näther and Rainer Herges

## Comment

We recently reported about a change of the spin state by association/dissociation of photodissociable ligands (PDL's) at square planar $\mathrm{Ni}(\mathrm{II})$ porphyrine complexes (Thies et al. 2010, Thies et al. 2011, Venkataramani et al., 2011). Within this project the title compound was synthesized as potential PDL and its structure was determined by single-crystal X-ray diffraction.

In the crystal structure of the title compound, the azo group is in a trans configuration with an torsion angle $\mathrm{C} 2-\mathrm{N} 2-$ $\mathrm{N} 2^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{i}}(\mathrm{i}=-x+1,-y+2,-z+1)$ of $180^{\circ}$ due to symmetry. The pyridine rings are not coplanar with the central $\mathrm{C}-\mathrm{N}-$ $\mathrm{N}-\mathrm{C}$ unit with torsion angles of $32.9(2)^{\circ}$ for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}$ and $151.5(2)^{\circ}$ for $\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 2^{\mathrm{i}}(\mathrm{i}=-x+1,-y+$ $2,-z+1)$.

## Experimental

3-Nitro-4-methoxypyridine $(1.14 \mathrm{~g}, 7.41 \mathrm{mmol})$ was dissolved in ethanol $(30 \mathrm{ml})$ and heated to $80^{\circ} \mathrm{C}$. Barium hydroxide $(3.50 \mathrm{~g}, 20.8 \mathrm{mmol})$ dissolved in 20 ml hot water was added. Zinc powder ( $6.00 \mathrm{~g}, 91,7 \mathrm{mmol}$ ) was added in small portions within 20 min . The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h and filtered over celite\®. 200 ml dichloromethane were added to the filtrate and air was bubbled through the solution for 2 h . The organic layer was dried over magnesium sulfate and the solvent was removed under reduced pressure. The crude product was dissolved in ethanol and two spoons of activated charcoal were added. After stirring at $80^{\circ} \mathrm{C}$ for 20 min the mixture was filtered over celite\® and the product was crystallized from ethyl acetate. An orange solid ( $120 \mathrm{mg}, 0.49 \mathrm{mmol}, 13.2 \%$ ) was afforded ( mp : $\left.218.4^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, 300 \mathrm{~K}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right)$ ): $\delta=8.58(\mathrm{~s}, 2 \mathrm{H}, 2-H), 8.55(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, 6-H), 7.02(\mathrm{~d}, J=$ $5.8 \mathrm{~Hz}, 2 \mathrm{H}, 5-H), 4.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right)$ p.p.m.. $\operatorname{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right)=2993,2951,1562,1485,1461,1442,1301,1272,1014$, 817, 762. MS (EI): $\mathrm{m} / z(\%)=244(100)[M]^{+}, 136(66)[M-\mathrm{PyrOMe}]^{+}, 108(77)[M-\mathrm{NNPyrOMe}]^{+} . \mathrm{MS}(\mathrm{CI}): \mathrm{m} / z(\%)=$ $245(100)[M+H]^{+}$. Anal. Calc.: $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ (244.10), ber. C 59.01, H 4.95, N 22.94, gef. C 59.72, H 4.58, N 22.64\%.

## Refinement

All H atoms were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and were refined isotropically with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic H atoms ( 1.5 for methyl H atoms) using a riding model.

## Computing details

Data collection: $X$-AREA (Stoe \& Cie, 2008); cell refinement: $X$-AREA (Stoe \& Cie, 2008); data reduction: $X$-RED32 (Stoe \& Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).


Figure 1
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the $50 \%$ probability level.
Symmetry code: $\mathrm{i}=-x+1,-y+2,-z+1$.

## Bis(4-methoxypyridin-3-yl)diazene

## Crystal data

$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=244.26$
Orthorhombic, Pbca
$a=13.3976$ (8) $\AA$
$b=6.2101$ ( 6 ) $\AA$
$c=13.6079$ (9) $\AA$
$V=1132.18(15) \AA^{3}$
$Z=4$
$F(000)=512$

## Data collection

Stoe IPDS-1
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Phi scans
5829 measured reflections

## 1235 independent reflections

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.105$
$S=1.04$
1235 reflections
84 parameters
0 restraints
$D_{\mathrm{x}}=1.433 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4972 reflections
$\theta=4.7-28.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=220 \mathrm{~K}$
Block, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

1002 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.1^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-17 \rightarrow 12$
$k=-7 \rightarrow 7$
$l=-17 \rightarrow 17$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0625 P)^{2}+0.204 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19$ e $\AA^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.030 (8)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors $(\mathrm{gt})$ etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| N1 | $0.66974(9)$ | $0.6358(2)$ | $0.34371(9)$ | $0.0314(3)$ |
| C1 | $0.62249(10)$ | $0.7907(2)$ | $0.39360(9)$ | $0.0263(3)$ |
| H1 | 0.6591 | 0.9134 | 0.4119 | $0.032^{*}$ |
| C2 | $0.52211(9)$ | $0.7811(2)$ | $0.42010(8)$ | $0.0211(3)$ |
| C3 | $0.46546(10)$ | $0.60269(19)$ | $0.38987(8)$ | $0.0205(3)$ |
| C4 | $0.51423(10)$ | $0.4414(2)$ | $0.33786(9)$ | $0.0250(3)$ |
| H4 | 0.4794 | 0.3190 | 0.3161 | $0.030^{*}$ |
| C5 | $0.61506(11)$ | $0.4644(2)$ | $0.31870(10)$ | $0.0301(3)$ |
| H5 | 0.6475 | 0.3513 | 0.2857 | $0.036^{*}$ |
| N2 | $0.47208(8)$ | $0.94965(17)$ | $0.47068(7)$ | $0.0228(3)$ |
| O1 | $0.36924(7)$ | $0.60036(15)$ | $0.41627(7)$ | $0.0277(3)$ |
| C6 | $0.30947(11)$ | $0.4230(2)$ | $0.38338(11)$ | $0.0321(4)$ |
| H6A | 0.3032 | 0.4284 | 0.3124 | $0.048^{*}$ |
| H6B | 0.2438 | 0.4320 | 0.4130 | $0.048^{*}$ |
| H6C | 0.3410 | 0.2888 | 0.4024 | $0.048^{*}$ |

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N1 | $0.0230(6)$ | $0.0348(6)$ | $0.0364(7)$ | $-0.0008(5)$ | $0.0067(5)$ | $-0.0042(5)$ |
| C1 | $0.0237(7)$ | $0.0271(7)$ | $0.0280(6)$ | $-0.0044(5)$ | $0.0010(5)$ | $-0.0020(5)$ |
| C2 | $0.0227(6)$ | $0.0202(6)$ | $0.0203(5)$ | $0.0000(5)$ | $-0.0014(4)$ | $-0.0006(4)$ |
| C3 | $0.0200(6)$ | $0.0208(6)$ | $0.0205(6)$ | $0.0011(5)$ | $-0.0014(4)$ | $0.0011(4)$ |
| C4 | $0.0273(7)$ | $0.0216(6)$ | $0.0261(6)$ | $-0.0009(5)$ | $-0.0004(5)$ | $-0.0045(5)$ |
| C5 | $0.0292(7)$ | $0.0283(7)$ | $0.0329(7)$ | $0.0039(6)$ | $0.0052(5)$ | $-0.0058(5)$ |
| N2 | $0.0231(5)$ | $0.0202(5)$ | $0.0251(5)$ | $-0.0017(4)$ | $-0.0012(4)$ | $-0.0022(4)$ |
| O1 | $0.0193(5)$ | $0.0241(5)$ | $0.0396(6)$ | $-0.0030(4)$ | $0.0020(4)$ | $-0.0086(4)$ |
| C6 | $0.0230(7)$ | $0.0288(7)$ | $0.0444(8)$ | $-0.0068(6)$ | $-0.0037(6)$ | $-0.0068(6)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{N} 1-\mathrm{C} 5$ | $1.3360(19)$ | $\mathrm{C} 4-\mathrm{C} 5$ | $1.3832(19)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{N} 1-\mathrm{C} 1$ | $1.3369(18)$ | $\mathrm{C} 4-\mathrm{H} 4$ | 0.9400 |
| $\mathrm{C} 1-\mathrm{C} 2$ | $1.3936(18)$ | $\mathrm{C} 5-\mathrm{H} 5$ | 0.9400 |

## supplementary materials

| $\mathrm{C} 1-\mathrm{H} 1$ | 0.9400 | $\mathrm{~N} 2-\mathrm{N} 2^{\mathrm{i}}$ | $1.260(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C} 2-\mathrm{C} 3$ | $1.4044(17)$ | $\mathrm{O} 1-\mathrm{C} 6$ | $1.4333(16)$ |
| $\mathrm{C} 2-\mathrm{N} 2$ | $1.4209(16)$ | $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 0.9700 |
| $\mathrm{C} 3-\mathrm{O} 1$ | $1.3384(16)$ | $\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 0.9700 |
| $\mathrm{C} 3-\mathrm{C} 4$ | $1.3897(17)$ | $\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$ | 0.9700 |
|  |  |  |  |
| $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$ | $116.29(12)$ | $\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$ | 120.6 |
| $\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$ | $123.89(12)$ | $\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$ | $124.74(13)$ |
| $\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$ | 118.1 | $\mathrm{~N} 1-\mathrm{C} 5-\mathrm{H} 5$ | 117.6 |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$ | 118.1 | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$ | 117.6 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | $118.65(11)$ | $\mathrm{N} 2-\mathrm{N} 2-\mathrm{C} 2$ | $113.10(14)$ |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$ | $123.30(11)$ | $\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 6$ | $117.56(10)$ |
| $\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 2$ | $117.91(11)$ | $\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$ | 109.5 |
| $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$ | $125.58(11)$ | $\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 109.5 |
| $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$ | $116.77(11)$ | $\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$ | 109.5 |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ | $117.62(12)$ | $\mathrm{O} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$ | 109.5 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$ | $118.73(12)$ | $\mathrm{H} 6 \mathrm{~A}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$ | 109.5 |
| $\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$ | 120.6 | $\mathrm{H} 6 \mathrm{~B}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$ | 109.5 |

Symmetry code: (i) $-x+1,-y+2,-z+1$.

